Synthetic biology brings the hard science of engineering to the basics of life

Illustration: Sarah Grillo/Axios

Synthetic biology startups raised some $3 billion through the first half of 2020, up from $1.9 billion for all of 2019, as the field brings the science of engineering to the art of life.

The big picture: Synthetic biologists are gradually learning how to program the code of life the way that computer experts have learned to program machines. If they can succeed — and if the public accepts their work — synthetic biology stands to fundamentally transform how we live.

What's happening: SynBioBeta, synthetic biology's major commercial conference, launched on Tuesday, virtually bringing together thousands of scientists, entrepreneurs, VCs and more to discuss the state of the field.

  • Startups in the field are attracting more funding, including Impossible Foods, which uses bioengineered additives as part of its alternative meat. The company last month picked up another $200 million in funding, valuing it at $4 billion.
  • A McKinsey report from earlier this year estimated the entire bioeconomy could have a direct global economic impact of up to $4 trillion over the next 10–20 years.

How it works: Broadly defined, synthetic biology takes an engineering approach to shaping life for specific ends, from enzymes to microbes to, eventually, the human genome itself.

  • The difference between the past few centuries of breeding plants and animals and today's synthetic biology is the control scientists are increasingly able to maintain over the messy stuff of life, thanks to advances in sequencing genes and, increasingly, synthesizing them.
  • They can make deliberate, precise edits to DNA through new tools like CRISPR or even create genetic matter in entirely new combinations.

Why it matters: For synthetic biologists, designing and building living systems is the best way to fully understand the principles of life.

  • Yet synthetic biology's practical value is just as important, if not more so, than its pure scientific value. Instead of imposing ourselves on nature, as humans have done since the Industrial Revolution, we can harness it and shape it to our own ends.
  • "We don't discover bridges or buildings," Vijay Pande, a general partner at the VC firm Andreessen Horowitz who focuses on biotech, told me in an interview earlier this year. "We understand them and we design them — which is where we're going with biology."

From alternative meat to advanced biofuels to mushroom-based building materials, one of the biggest promises of synthetic biology involves the engineering of products that are far more sustainable than those generated by conventional industry, because biology itself is inherently less wasteful.

  • "We can grow materials that create better products for the planet and better products for the bottom line," Gavin McIntyre, a co-founder of the biomaterials company Ecovative Design, at a SynBioBeta panel on Tuesday.

What's next: "We're still in the Apple II days of programming biology," said Pande.

  • But that is changing — both DNA sequencing and synthesis are now accelerating faster than computing power.
  • Add machine learning to the mix, and the speed will only increase. In a paper published in Nature Communications last week, researchers found algorithms were able to predict how changes in a cell's DNA would affect its behavior and make recommendations for future biological engineering cycles.
  • That could accelerate everything from the discovery of new drugs to the development of lab-grown meat, as computers help synthetic biologists truly program life like their counterparts already program computers.

The catch: What makes biology uniquely powerful — self-replication — can also make it dangerous and hard to control.

  • Synthetic biologists also have to overcome an ingrained public suspicion of modifying nature.
  • A global Pew Research survey released this week found larger shares of the public believe genetically modified foods are unsafe to eat than those who believe they are safe to eat.

The bottom line: Computer code undergirds the most profitable companies the world has ever seen, but the code of life promises to be just as influential for the future — if we can master it.

Source: Read Full Article